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Abstract. In a recent paper, it was shown in detail that in the case of orthonormal and biorthonormal filter

banks we can convolve two signals by directly convolving the subband signals and combining the results. In

this paper, we further generalize the result. We also derive the statistical coding gain for the generalized

subband convolver. As an application, we derive a novel low sensitivity structure for FIR filters from the

convolution theorem. We define and derive a deterministic coding gain of the subband convolver over direct

convolution for a fixed wordlength implementation. This gain serves as a figure of merit for the low sensitivity

structure. Several numerical examples are included to demonstrate the usefulness of these ideas. By using

the generalized polyphase representation, we show that the subband convolvers, linear periodically time

varying systems, and digital block filtering can be viewed in a unified manner. Furthermore, the scheme

called IFIR filtering is shown to be a special case of the convolver.
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1. INTRODUCTION

1.1. Main results of this paper and previous work

Convolution plays a central role in digital signal processing. Many well-known algorithms are proposed to

reduce the computational complexity of convolution [1]. In this paper, our aim is not to find an algorithm that

is faster than existing fast algorithms. Our goal is to find a more accurate way to compute the convolution

when the convolution is implemented with finite precision. For this we use filter bank techniques. Consider

the filter bank in Fig. 1.1(a), where Hk(z) are the analysis filters and Fk(z) are the synthesis filters. This

multirate system has been studied by a number for researchers [2]-[8]. The analysis bank {Hk(z)} splits the

signal x(n) into the subband signals xk(n).

In a recent paper [2], it was shown that if the systems in Fig. 1.1 are perfect reconstruction systems

(i. e. z(n) = i(n) and g(n - i) = ?(n - i)), we can obtain the convolution of z(n) and g(n) by simply

convolving xk(n) and 9k(f(n) and adding the results. No cros&-convolution between the subband signals

is involved. When the computation is done with finite percision, it was also shown in [2] how the energy

distribution in the subbands of x(n) and 9(n) can be exploited t- obtain a more accurate (compared to

direct convolution) result. Optimal bit allocation and coding gain over the direct convolution were derived

for both the cases of uniform and nonuniform decimated systems. In this paper, we further generalize the

subband convolution theorem and show that no cross-convolution between the subband signals is involved in

the generalized subband convolution theorem. Then we derive the coding gain for this generalized subband

convolver. We will also show that the coding gain for the generalized convolver is always greater than that

derived in [2], provided that the filter banks are orthonormal. We will refer to the convolution theorem

derived in [2] as one-level filter bank (FB) convolution theorem and the generalized theorem in this paper

as two-level FB convolution theorem. The reason for these names will be made clear in Section 2.

In [2], only the quantization in the subbands of z(n) was considered. In this paper, we will address the

case when the subband signals of g(n) are quantized. In this case, we quantize the filter coefficients g,)(n)

in the subbands based on the input signal variance, and maximum amplitude of the filter. In the process

of quantization, the filter coefficients are treated as deterministic parameters instead of random variables

as done in [9]. Thus overflow of subband coefficients is completely avoided. We will derive the optimal

bit allocation and the deterministic coding gain formulas. The derivation leads to a novel low sensitivity

structure for FIR filters. The new structure is particularly attractive when the filter g(n) is frequency

selective and has a long impulse response, or it has some special time-frequency relation, e.g. the matched

filtering of a chirp signal in radar application [10].

In this paper, we also explore the relationship between the convolver and the digital block filtering

[11], [12] and [13]. We show that both the one-level and two-level FB convolvers are generalizations of the

conventional block filtering. The subband convolvers have both the advantages of coding gain and parallelism.

Adaptive filtering in subbands has been introduced with the goals of both reducing the computational
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complexity and improving the convergence speed of the algorithm. In [14], it was observed that the overall

performance of subband adaptive filtering is acceptable though there is some degradation in the convergence

performance. In the view of generalized block filtering, the structure used in [141 can be regarded as a

simplified version of the two-level FB convolver introduced in this paper. Thus it is possible to improve the

performance of the subband adaptive filter by using the two-level FB convolver.

In the light of block filtering, we generalize the subband convolution technique to implement a linear

periodically time varying (LPTV) filter. By using the generalized polyphase representation, we show that

interpolated finite impulse response (IFIR) filter (15] is a special case of the subband convolver.

The filter bank techniques have been used in [16] to implement FIR and IIR filters. A different subband

convolution theorem which leads to computational saving is derived in (16]. The subband convolution

theorem proposed is applied to the digital pulse compression in radar application by Steffen in [10] and the

convolution using DFT filter bank is discussed in detail. The subband convolution theorems discussed in

this paper and in [2] differ from that derived in (10] and [16] in the sense that the convolution is 'perfect'

regardless of filter responses of the biorthonormal filter bank. Moreover it works for the nonuniform and

maximally decimated cases.

1.2. Outline of the paper

Our presentation will go as follows:

1. In Section 2, we will generalize the subband convolution theorem. This is the two-level FB convolution

theorem. A pictorial proof of the theorem is provided in Section 2.3 to give a clearer insight into what

is going on in the convolution theorem.

2. In Section 3, we consider the quantization of the input signal x(n). The optimal bit allocation and

coding gain for the two-level FB convolver are presented.

3. A low sensitivity structure is derived in Section 4, first using the one-level FB convolver and then the

two-level FB convolver. The optimal bit allocation and deterministic coding gain formulas for both the

cases will be derived.

4. Several numerical examples are included in Section 5 to demonstrate the usefulness of the low sensitivity

structures. From the examples, we will see that the performance of the two-level FB convolver is better

than that of the one-level FB convolver. The coding gain of the convolvers is also shown.

5. We will discuss the relationship among conventional block filtering, and one-level and two-level FB

convolvers in Section 6.1. In the presence of quantizers in the subbands of g(n), we will show in Section

6 that the linear time invariant (LTI) filter is effectively replaced by a LPTV filter in the low sensitivity

implementation. We will analyze the effect of this.

6. In Section 7, we will consider the application of the subband convolution theorem to infinite impulse

response (IIR) filters.
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7. In the last section, we will relate the IFIR filter to the subband convolver.

1.3. Notations and preliminaries

Notations: Capital boldfaced letters and lowercase boldfaced letters are used to denote matrices and

vectors respectively. The (kc, i)th element of a matrix E is denoted by [E]ki. The superscript * denotes

complex conjugate and f denotes conjugate followed by tranposition. The z-transform of v(n) is represented

by V(z). The notations (V(z))±M and (V(z)) IM denote the M-fold decimated and M-fold expanded versions

of the signal v(n) respectively. The convolution of x(n) and g(n) is denoted by x(n) * g(n).

Quantizers: Consider Fig. 1.1(a), where a general M-channel nonuniform decimated filter bank is

shown. The boxes labelled Q, are the quantizers. By b bit quantizer, we mean that the output signal of the

quantizer is represented by b bits plus a sign bit. In this paper, the weight on the most significant bit is

fixed for a fixed quantizer.

The decimators and expanders [17]: The boxes with 4 nt denote the nk-fold decimators and the

boxes with T nk denote the nk-fold expanders. Their operations can be mathematically described respectively

by the following two equations:

1 -1
( V(z 1/"',.), v(z)v(Z)•,,, = nk i=O

where Wn' = e-•i2 /n.. The subscript nk on W will be omitted whenever it is clear in the discussion.

Maximal decimation: An M-channel nonuniform multirate system is said to be maximally decimated
i= -M L -= 1. In the uniform case where all nk are equal, this translates to nk = M for all k.

Conventional polyphase representations (3], (18], [17]: Consider a set of filters Ht(z), k =

0, 1, ... M - 1. They can be uniquely written in terms of their M polyphase components as Hk(z) =
r,-1 z-1 Eki(Z M ). This is known as Type 1 polyphase representation and Ekl(z) is called the l-th polyphase

component of H4(z). The M x M matrix E(z), with its k-th row l-th column element [E(z)]Jl = Ekz(z), is

called the Type I polyphase matrix of the filters Hk(z). Similarly, Hk(z) can be written in terms of their

Type 2 polyphase components as H4(z) = EM-1 zR:k(zM ). The Type 2 polyphase matrix R(z) of the

filters Hk(z) is defined as (R(z)]Lk = R,&(z). These polyphase representations are proved to be valuable in

both the theory and design of filter banks.

Generalized polyphase representations (6], [19]: Generalized polyphase (GPP) was introduced in

[6] and used in [191 to enchance the coding gain of subband coding. Instead of expressing a signal v(n) in

terms of the functions {z-4} as in the conventional polyphase representation, we express v(n) in terms of

the functions {U,(z)} as follows:
M-1

V(z) = i v,(zM )Ui(z). (1.2)
i=-

This representation is said to be a valid GPP representation if the functions {Ui(z)} (called a "polyphase

basis") satisfy the conditions [19]: (i) Every rational function V(z) can be expressed as (1.2), where V,(z)
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are rational. (ii) V(z) is FIR if and only if V1(z) are FIR. By defining U(z) to be the conventional polyphase

matrix of the polyphase basis {Ui(z)}, these conditions were proved to be equivalent to det[U(z)] = czk,

for c 0 0 and integer k. We will call V1(z) the ith GPP component of the signal v(n) with respect to the

polyphase basis {Ui(z)}.

Orthonormality and biorthonormality [2], [3], [8], [201: From Fig. 1.1(a) (ignore the quantizers in

the subbands), the z-transform of the output of the filter bank is

M-1

R(z) = Xk(zn)F(z). (1.3)

If i(n) = x(n) for all x(n), then the system is called a biorthonormal or perfect reconstruction filter bank.

The biorthonormality of the filter bank translates to the following condition on the filters Hk(z) and Fk(z):

[Hk(z)Fm(z)} = 6(k - m), (1.4)

where nk,,m = gcd(nk,nm). From (1.4), we can see that the perfect reconstruction property is preserved

when we interchange the roles of Hk(z) and Fk(z). The set of filters {Fk(z)} is said to be orthonormal if

(Fk(z)F-*(1/z*))i,•,,, = 6(k - m). In the case of uniform decimation system, the filter bank is said to be

paraunitary if the polyphase matrix R(z) of {Fk(z)} satisfies the condition R(z)Rt(1/z*) = I, where I is

identity matrix.

Remarks: For uniform biorthonormal system (all ni- = M) with FIR analysis and synthesis fiters, (1.3)

is a GPP representation of X(z) with the polyphase basis {U1(z)I taken to be {F 1(z)}. The subband signals

Xk(z) can be regarded as the GPP components.

An M-channel delay chain: Consider Fig. 1.1(a). Let all nk = M. Then the system is a uniformly

decimated system. If the filters H1(z) = z-k and Fk(z) = zk, then the system is called an M-channel

delay chain. Notice that a delay chain is trivially an orthonormal system with the identity matrix I as the

polyphase matrix.

2. ONE- AND TWO-LEVEL FILTER-BANK CONVOLUTION
THEOREM

2.1. Review of one-level FB convolution theorem

Consider the two maximally decimated filter banks as shown in Fig. 1.1 (ignore the quantizers in the

discussion of this section). Assume that the system has perfect reconstruction. Then it was shown in [21 how

we can convolve two signals z(n) and g(n) by directly convolving the subband signals Xk(n) and gk()(n) and

adding the results. No cross-coupling between subbands is involved. More precisely, we have the following

biorthonormal convolution theorem:

Theorem 2.1 [2]. One-level filter bank (FB) convolver. Consider Fig. 1.1. Assume that the system

has perfect reconstruction. Define the integer pt - LInk, where L denotes the lcm of the decimation ratios
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{nk}. Let xk(n) and g( )(n) be the subband signals defined in Fig. 1.1(a) and (b) respectively. Then the ith

polyphase component, yi(n) of x(n) * g(n) can be written as

lis(n) = (x(n) *(g(n - 0 ,(xk(n) * g,')(n)). (2.1)

The advantage of the subband convolution is that we can compute the result more accurately when the

convolution is implemented with finite precision. It was shown in [2] how we can quantize the subband signals

xk(n), and reduce the quantization noise by optimally allocating the bits in the subbands. By exploiting the

subband energy distribution, the optimal bit allocation scheme and the coding gain over direct convolution

were derived in [2].

Comments on complexity. Notice that the subband convolution theorem holds even when the

analysis and the synthesis filters are IIR filters. But if we consider computational cost, the FB convolver is

useful only when H1(z) and Fh(z) are FIR filters. Thus in this paper, we will consider subband convolvers

with FIR analysis and synthesis filters only. Also note that the computation of zk(n) involves filtering.

Since g(n) is a fixed filter, the subband signals g9()(n) can always be precomputed and stored. Thus the

complexity of the subband convolution is approximately equal to that of direct convolution plus the cost of

implementing an analysis bank, assuming that no fast algorithm for convolution is used. If the complexity

of the filter bank is low (compared to the length of the sequences x(n) and g(n)), then the computational

cost of xk(n) is negligible compared to that of the convolution. In this case the complexity of subband

convolution and that of direct convolution are approximately the same.

2.2. Two-level FB convolution theorem

Theorem 2.2. Two-level FB convolver. Consider Fig. 1.1. Let {H&(z)} and {Fk(z)} be respectively

the analysis and synthesis filters of an M-channel maximally decimated nonuniform filter bank with perfect

reconstruction. Define the integer pk = Link, where L denotes the lcm of the decimation ratios {nk}. Let

{Hk(z)} and {F,(z)} be respectively the analysis and synthesis filters of a "L-channel" uniform biorthonormal

system. Let Xk (n) and 9k(0 (n) be respectively the kth subband signals defined in Fig. 1.1(a) and Fig. 2.1. Then

the ith GPP component yi(n) of x(n) *g(n) with respect to the polyphase basis {FP(z), i = 0, 1, ... , L-1}

can be written as
M-1

yv(n) E (zk(n) * 9( )(n))" (2.2)
k=O i It

Proof From the definition of Xk(z) and G(h)(z) and using the biorthonormality (1.3) of the filters

{Hk(z)} and {Fk(z)), we get

M-1 M-1

X(z) = E Xk(Zn*)Fk(Z), and G(z)H•(z) = E GM')(zn)H1(z). (2.3)
k=O 1=0
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Multiplying the above two equati& is and decimating both sides by L, we have

[X~z '(Z)H()] IL J1~ [Xak(z"&~. )G1FzkIfhI] ,[A(Z)HJ (Z)]1L
1X(Z)(Z)Hik=0 1=0

M--1 -

E M Xk W(k4)G' (Z)] lp,(2.4)
•L k=O O

where nk,1 = gcd(nk, ni) and the integer PkJ = L/nk,i. The second equality follows from (1.4) and the fact

that [V(z)]LL = [(V(z))4n•.,]lp,, . Applying the biorthonormality of the filters {H•(z)} and {Fi(z)} the

left hand side of (2.4) is by definition the ith GPP component of X(z)G(z) with respect to the polyphase

basis {F,"(z)). The proof is complete. VVV

Eqn. (2.2) gives only the ith GPP component of z(n) * g(n). The convolution output i,(n) can be

synthesized from the GPP components as follows:

L-1 M--1 M-1

Y(z) = E F/(z)Y,(zL) = E 1 F1(z) E Xk.(zn)G(')(zn&). (2.5)
t=O i'O k=O

Remarks: Notice that for the uniform case, the corresponding formulas can be obtained by replacing

all nk with M, and Pk with unity. Also notice that even for the nonuniform case, the second-level filter

banks with filters {Hk(z)} and {Fk(z)} are constrained to be uniform filter banks with decimation ratio

L = lcm{nk).

Comparison of two-level FB convolver with one-level FB convolver. Theorem 2.1.and 2.2 give

us respectively the implementations of one-level and two-level FB convolver as Fig. 2.2(a) and (b). Since g(n)

passes through two levels of filter banks, we call the subband convolver in Fig. 2.2(b) two-level FB convolver.

From these two figures, it is clear that the two-level FB convolver is a generalization of the one-level FB

convolver. By taking Hk(z) and F•(z) to be z-' and z' respectively, the two-level FB convolver reduce to the

one-level FB convolver. As in the one-level FB convolver we see that there is no cross-convolution between

subbands in the two-level FB convolver. But in order to obtain the convolution output, the outputs of the

subband convolutions have to be interpolated by the synthesis filters Fk(z) (Fig. 2.2(b)), instead of just

interlacing as in the one-level FB biorthonormal convolution (Fig. 2.2(a)). The advantage of the two-level

FB convolution theorem over the one-level case will be clear when we discuss the low sensitivity FIR filter

structure in Section 4. The two-level FB convolver usually computes the convolution much more accurately

than the one-level FB convolver, for the same average bit rate. The complexity of the former is that of the

latter plus the cost of an additional synthesis bank F,(z) (since gk()(n) can be precomputed and stored).

Thus if the complexity of the filter bank {Fk(z)) is low, then the complexity of the new subband convolution

is comparable to that of direct convolution.

2.3. Pictorial proof of the subband convolution theorem

The above subband convolution theorems can be proved easily by using a sequence of figures. The

pictorial proof of Theorem 2.1 leads us naturally to the two-level FB convolution theorem. It also gives
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a clear insight into what is going on in the subbands, and why perfect convolution is perserved when we

pass from the one-level FB convolution theorem to the two-level FB convolution theorem. By using the

same technique, the subband convolution theorem has been generalized to the most general case of the

multidimensional nonuniform filter banks with rational decimation ratios [211.

Consider Fig. 2.3(a), where we want to compute x(n) * g(n). Clearly, any two identity systems I1 and

12 can be inserted before and after the filter G(z) without changing the convolution output, as shown in

Fig. 2.3(b). If we choose the identity systems to be filter banks with perfect reconstruction, then we can

utilize the frequency splitting property of the filter banks and quantize the subband signals according to the

energy distribution in each subband. We may also select other identity systems, depending upon the task

we want to perform. If we choose I1 to be the perfect reconstruction system shown in Fig. 1.1(a), and 12 to

be an L-channel delay chain, then we can show that the equivalent system shown in Fig. 2.3(c) is the same

as that depicted in Fig. 2.2(a). By using the fact that L = nkpk, i. e. an L-fold decimator is equivalent

to an nk-fold decimator followed by an pk-fold decimator, the ith branch of the system in Fig. 2.3(c) (i. e.,

the system from x(n) to yi(n)) can be redrawn as Fig. 2.3(d). Applying the identity in Fig. 2.3(e), it is

clear that the system in Fig. 2.3(d) is equivalent to the ith branch of the system in Fig. 2.2(a). This is the

one-level FB biorthonormal convolution theorem that we have described in Theorem 2.1.

Similarly, to prove Theorem 2.2, we select 12 to be an L-channel biorthonormal filter bank with perfect

reconstruction instead of a trivial delay chain. By carrying out exactly the same procedure as above, we can

arrive at the result proved in Theorem 2.2.

From the sequence of figures in Fig. 2.3, we see how x(n) and g(n) are split into different subband

signals by the two multirate systems. Very similar to the idea of subband coding, the energy distribution of

both z(n) and g(n) can be exploited to obtain a more accurate convolution if the computation is done in

finite percision.

3. CODING GAIN OF TWO-LEVEL FB CONVOLVERS
In this section, we will consider the coding gain for the quantization of the input signal x(n) only. The

filter g(n) is not quantized. For the case of one-level FB orthonormal convolver, the optimal bit allocation

and coding gain were discussed in detail in Section 3.2 and 3.3 of [21 respectively for both the uniform and

nonuniform cases. For the case of one-level FB biorthonormal convolver, as the formulas for both the optimal

bit allocation and coding gain take exactly the same form as (3.16) and (3.17) in [2] respectively. The only

difference is that we cannot prove a result similar to Lemma 3.1 and 3.2 in [2], i. e., the coding gain for

the biorthonormal convolver cannot be proved to be always greater than unity. So we will not elaborate

on the one-level FB convolver. But for the two-level FB convolver, as the subband convolution results are

interpolated by the synthesis filters {F•(z)} as shown in Fig. 2.2(b), the analysis of the output error due

to the quantization in the subband is more complicated. Furthermore, the optimal bit allocation scheme

is quite different from that of the one-level FB convolver since the energy of H'(z)G(z) is different in each
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branch in Fig. 2.2(b). We will derive the optimal bit allocation and coding gain formulas for the two-level FB

convolver in the rest of this section. Since the uniform convolver is strictly a special case of the nonuniform

convolver, we will only derive the result for the nonuniform case. The corresponding formulas for the uniform

case follow directly by replacing L and all nk's with M.

Consider Fig. 2.2(b). Assume that x(n), g(n), and the filter coefficients in all analysis and synthesis

filters in the filter bank are real. Then the quantizer operates on real inputs only. Let bk, be the number of

bits per sample of xk(n), allocated to Qk,, the quantizer in the k-th channel in the i-th branch. Therefore

the average bit rate is

b -1 M-1 b(3.1)
b =0 k=0

3.1. The noise model

The error due to the quantizer Qkj is defined as

qj(n)!4I) (n) - Xk(n), (3.2)

where 2) (n) is the quantized version of xk (n) in the i-th branch. The quantization error can be modeled as

an additive noise source. Thus the quatizer Qkj can be replaced by the broken line as shown in Fig. 2.2(b).

The reason why we choose double index instead of single index as in [21 would be clear after the derivation

later.

To analyze the convolution error, we make the following assumptions:

(i) x(n) is zero mean wide sense stationary (WSS) with variance a.. Then xk(n) are also WSS, with

variance

or, = S-z(Sw)IHk(ejw)12 , (3.3)

where Szz(ejd) is the power spectrum of x(n).

(ii) g(n) is a dete-rministic sequence. We define a useful parameter a, as

ki = MY Z Ig( (n)I2 , (3.4)
1,

where ak 1/M can be interpreted as the energy of the subband signal )(n).

(iii) qki(n) is zero mean white with variance au., where under certain conditions, Or2 is related to Vr2 as

2 co 2 
2 -24i. (3.5)

See Chapter 4 of [221 or Appendix C of [31. Here c is a constant which depends only on the probability

distribution of the subband signals z (n). We have assumed that c is independent of k which is true

only if all xk(n) have the same probability distribution.
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The cross-correlation of qai(n) is

Frqj•(n)qj(L)} = a9•,,(k - m)6(n - 1), (3.6a)

i. e. qk,(n) is uncorrelar- I to qm,(l) for k # m and for all i, n, 1. Notice that E{qk,(n)qkj(n)} need

not be zero for #. . We also assume that qk (n) is uncorrelated to the subband signals xk(l), that is

E{xk(l)qk,(n)} = 0. (3.6b)

3.2. Optimal bit allocation and coding gain for the two-level FB convolver

To derive the optimal bit allocation and coding gain formulas for the two-level FB convolver, we assume

that the second set of synthesis filters F•(z) are orthonormal (or equivalently the uniform filter banks formed

by {H•(z)} and {Fk(z)} are paraunitary). Consider Fig. 2.2(b). The error in the subband convolution

output Vi(n) is
M-1

q,(n) = E (qki (n) * gk() (n)) 1 P (3.7)
k-=0

By using (3.4)-(3.6) and the fact that the decimator will not change the variance, the variance of q., (n) can

be expressed as

M-1

(T 9. a 2 E~ lg~)11
k-O I

M--1

MCZ ...- 2b h i2 for 05<i <L-1. (3.8)

k=O

Since the synthesis filters F,'(z) are orthonormal, the average variance over L samples, a29 of the output

error is simply the average of ,2, for 0 _< i < L - 1, see Section C.4.2 of 131 or 123]. So we have

a2 1 a 2 = c L ' 2 - 2 bhia22  (3.9)

q, L E-q0 ML i-ki

To obtain the optimal bit allocation, we minimize the average output noise variance under the constraint

(3.1). We form the Lagrangian
.L--I M-1

CF2 = b -2 1 b ( -04U, .-A Eb- Z 'k±)" (3.10)

i=0 k-0

By setting 80/8bki = 0 for all 0 < i < L - I , 0 < k < M -1 and L90/aA = 0, we get

nk2bkoz cri=D for 0<i<L-1, 0<k<M-1 (3.11)

where D is a constant independent of i and k. Let y2 be the geometric mean of a2 over the index i, that is
L-I

"r= l(ai)/L (3.12)

i=0
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By using (3.1), (3.11) and (3.12), we find that

2-2b M -1 k 2 *yTk) I1n
D - ( (3.13)

kPO

Substituting (3.13) into (3.11), we find that the optimal number of bits allocated to the quantizer Qk, at the

k-th channel in the i-th branch is

M-1
bki = b+ 5log2 (nk ) - 0.5 ~log2 (nj10)92 (3.14)

j=0

Periodically time-varying bit allocation. From (3.14), we see that the average bit rate b must

be high enough so that bkj _ 0 for all k and i. Notice that bki are integers and the values evaluated by

(3.14) must be rounded off to integers. Intuitively, we would assign more bits to those quantizers in branches

where g(n) * h'(n) has higher energy and in channels where xk(n) has higher energy. (3.14) tells exactly how

this should be done according to the energy distribution. In the case of the one-level FB convolver, since
91')(n) is simply obtained by time-shifting g(n) (see Fig. 2.2(a)), we would expect that a will have very

little dependency on i. In this case, bki are the same for all i and (3.14) reduces to (3.32) in [2). However

in the case of the two-level FB convolver, ~,k may differ greatly for different i, especially when the filter

g(n) is a frequency selective filter (which is usually the case). Then bki may vary greatly with respect to i.

This is the reason why we use double index. In this case, not all branches are equally important as in the

case of the one-level FB convolver, and the coding gain may increase significantly by using this "periodically

time-varying" bit allocation scheme.

By using (3.11) and (3.13) and the fact that the filter bank is maximally decimated, i. e. -k__ + = 1,

we find that the average output noise variance under optimal bit allocation is

cD c -2bM-1 2I - /nh
qV,opt - H - (3.15)

k=O

If x(n) is quantized to b bits, then in the direct convolution the output noise variance due the quantization

is found to be

ai = c2- Z g(-) 12. (3.16)

Under optimal bit allocation, the coding gain of the two-level FB convolver over the direct form is

output varianceldirect cony
output variancelsubbfnd ,ony

2M -, X En,• 1xn)1 (3.17)
1I-1(O.2jI/, I r-'M-1 t 2 lnj

ih=o -,=, ih=0 (ni-yi2]

The "z, two" in the subscript in (3.17) indicates that the coding gain is obtained by using the two-level FB

convolver and quantizing the signal x(n). This subscript is used to distinguish (3.17) from the deterministic
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coding gain which is obtained by quantizing g(n) in the next section. From the right hand side of (3.17),

we see that the variation of subband energy of both x(n) and g(n) contributes to the coding gain. The first

term is the gain contributed by x(n) and the second term is the gain contributed by g(n).

Summary of crucial assumptions. In the derivation of (3.17), we have assumed that the constant

c in (3.16) is the same as that in (3.5) which is true only if x(n) and all Xk(n) have the same probability

distribution. Also in the above derivation, we have made used of the orthonormality of the filters {F, (z)}

and the uncorrelated assumptions of qki(n). Notice that only the biorthonormality of the filters {Fk(z)} and

{Hk (z)} is required for (3.17) to be valid, orthonormality of those filters being not necessary. But without the

orthonormality of those filters, we cannot guarantee that the optimal coding gain in (3.17) is always greater

than unity. If the filters {Fk (z)} are orthonormal, then we can prove that the coding gain for the two-level

FB convolver is always greater than unity, regardless of the quality of the filters {Hk(z)}, {Fk(z)}, {Hk(z)}

and {Fk(z)}. Moreover, we can prove that this coding gain is never smaller than that of the one-level FB

convolver derived in Section 3.3 in [2], provided that x(n), g(n), {Hi(z)} in both cases are the same. More

precisely, we have the following lemma:

Lemma 3.1. The coding gain G,,to of the two-level orthonormal FB convolver (i. e. FB in both

levels are orthonormal) is never smaller than that of the one-level orthonormal FB convolver, regardless of

the choice of pare initary filters {Hi(z)}, provided that x(n), g(n), {Hk(z)} in both cases are the same.

Moreover, they are equal if and only if the sequence gi(,) (n) has the same energy for all 0 < i < L - 1. 0>

In [2], it was shown that under optimal bit allocation, the coding gain of the one-level FB convolver is

Gz,o.n, = En__x _" Ig(n)12 (3.18)M--I/2•/nj X I Im--l1 2\/i
i=0 io, •l=0 L,

where a2 is defined as
ML-i

k= T (n)12, (3.19)

where the "one" in the subscript is used to denote that gk'.( a

convolver (see Fig. 3.1). Comparing (3.18) with (3.17), we find that the coding gain formulas for both the

one-level and two-level FB convolvers are very similar, except that a2 is replaced by 2 Therefore in the

following proof of Lemma 3.1, we need to establish the relation between a2 and -yf.

Proof of Lemma 3.1. By defining h'(z) = [H.(z) H'(z) ... H' _I(z)]T, and e(z) -T1 z 1 ... z(L1)]T,

we have h'(z) = E'(zL) e(z), where E'(z) is the L x L polyphase matrix of h'(z). From the definition of

and ( (n), it is clear that 9(')(n) can be obtained by passing g(), (n) through E'(zPk) as shown

in Fig. 3.1. Since E'(z) is paraunitary, we have [23]

L-1 L-1
= .o, 1 ,) (n)1 2 (3.20)

j=0 n t=0 n
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By using (3.4), (3.19) and (3.20), we find the following important equality

21 -1a, = y a2, = arithmetic mean of a2,. (3.21)

By taking the ratio of G,,tw. to Gz,oae, we find that the ratio of the coding gain of the two-level FB

convolver to that of the one-level FB convolver is

R. = 11 ) ifn (3.22)

Using (3.12) and (3.21) and applying the AM-GM inequality, each term in the product in (3.22) is

greater or equal to unity with equality if and only if a2 = a2 for all i. So we conclude that RP _ 1, with

equality if and only if a2 _ a= - 72 for all i. Or equivalently, the sequences 9()(n) have the same energy

for all 0:< i <L - 1. VVV

Corollary 3.1. G.,two Ž 1 for the two-level orthonormal FB convolver, regardless of the choice of

the orthonormal sets of filters {Hk(z)} and {HL(z)}. Equality holds if and only if both a.2, and nka , are

independent of k and i. 0

Proof. This follows directly from the above lemma and Lemma 3.2 in [2]. V V V

4. LOW SENSITIVITY STRUCTURE FOR FIR FILTERS AND
DETERMINISTIC CODING GAIN

Ignore the quantizers in the subbands of z(n) for the discussion of this section. Very similar to the idea

of quantizing x(n), we can quantize the filter coefficients gk (n) in the subbands based on the input signal vari-

ance and maximum amplitude of the subband filter coefficients. However, the coefficients have to be treated

as deterministic parameters so that overflow is avoided completely. In this implementation, the convolution

error due to the coefficient quantization is much smaller than that in the direct form implementation. Let

gý(•)(n) be the quantized version of g(t)(n). Then we can redraw Fig. 2.2(a) and (b) as Fig. 4.1(a) and (b)

respectively. The implementations in Fig. 4.1(a) and (b) can be regarded as low sensitivity implementations

of the filter g(n). In this section, we will discuss in detail first the optimal bit allocation and the coding

gain over direct form for the one-level FB convolver and then for the two-level FB convolver. Again we will

only derive the formulas for the nonuniform case. The corresponding formulas for the uniform case can be

obtained by simply replacing nk and L with M. For a preview of the advantage of the implementaion, com-

pare Fig. 5.2 and Fig. 5.3. When the same average number of bits is used to quantize the filter coefficients

for direct convolution (Fig. 5.2) and subband convolution (Fig. 5.3), the improvement shown in these figures

is significant. In the rest of this section, we will translate this improvement into a mathematical formula.

4.1. Low sensitivity FIR filter structures using the one-level FB convolver

With the quantizers inserted in the subbands of g(n) as in Fig. 2.2(a), let bk be the number of bits per
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sample of gk(n), allocated to the quantizers Q'. Then the average bit rate b is defined as:

b 1bk (4.1)
k--O

4.1.1 The noise model

Define the deterministic quantization error to be

q0)Cn)9ý'k)(n) - g(0(n), (4.2)

where -g O(n) is the quantized version of gk()(n). To avoid overflow in the filter coefficients, we assume that

the weighting of the most significant bit assigned to the quantizer q• is greater than gk,,n., where

9A, -- =max gt)(n)1. (4.3)

i,,,

Under this condition, the stepsize in the k-th quantizer would be AA- = cl gk,,n.2-6b and the mean square

value of the quantization error q( )(n) is

O " 1/L')(n) -2b)9(n) 12 = c11L,,,,•2-2 g, (4.4)

n0-

where cl and c2 are constants independent of k and i, L., is the length of the subband filter g( (n). In

practice, cl and c2 will depend on g() (n), but the bit allocation and coding gain is insensitive to the variation

of these constants. To carry on the analysis, we assume that they are constant. We further assume that:

(i) x(n) is WSS as assumed in the previous section.

(ii) The deterministic cross-correlation of the quantization error q(0 (n), approximately satisfies

L, Z q(t)(p) q(S)(p + m) -- a-s°,6(k - j)6(m)" (4.5)

This is of course never exact because q( )(n) is FIR.

(iii) The length L. of g(n) is much greater than that of the analysis filters. So Lgh - L./nk. This is usually

the case if the filter bank is of low complexity.

4.1.2. The optimal bit allocation and the deterministic coding gain

Consider Fig. 4.1(a). The error of the subband convolution output yi(n), due to quantization of g(, (n),

can be expressed as
M-I

q., (n) = E (z& (n) * q,")(n)) ,. (4.6)
k-0

By using the assumptions in the noise model and carrying out the exact same procedure in Section 3, we

find that the optimal number of bits used to quantize the subband filter gk( (n) is
bk b--0.hogs 2 M--l

a.2'g2'. _ 0.5 (0.2 " i2'. I In,
= b-+ 0-510.5 g E 1092 (4.7)

i=O
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Under this optimal bit allocation, the average output variance is

2M - -1 n, l •k
lf cL-2-2" 1 (6 g9,,naz)iIa 2 (4.8)

k=O

In contrast, suppose we have convolved directly (i. e., without any filter bank). If g(n) is quantized to b bits

and without coefficient overflow, then the output error variance is

2 -2b 2 2 (4.9)
Odirect ý cL92 9,MZa, (.,

where 9,,x = max, Ig(n)I.

Therefore, from (4.8) and (4.9), we find that the deterministic coding gain of the one-level FB convolver

over the direct form is
a2 g2.

G 9 , one = X flM g2)/k (4.10)
Ilk=0()'fl& x =

A lower bound for the coding gain. In the above derivation, orthonormality property of the filter

bank is not required, biorthonormality is sufficient. As there is no strong relationship between gk,,n= and

gma, , even for the case of orthonormal convolver, the deterministic coding gain cannot be proved to be

always greater than unity. The likelihood that the deterministic coding gain is less than unity is very low. In

fact, in all the examples we encountered in numerical experiments, the coding gain is quite large. However,

if the analysis and synthesis filters have unit energy (this condition indeed implies that the biorthonormal

filter bank is orthonormal [24)), we can obtain a (very pessimistic) lower bound for the coding gain. From

Appendix A, we have the following very loose relationship between gk,ma= and g,,,.az:

gk,mox 5 VLV-,g,.a, (4.11)

where LH. is the length of the filter H1(z). Substituting (4.11) into (4.10), we find that the coding gain is

lower bounded as

G9 , one ! a.2 (4.12)
fM=0 (L• 0 .' •2)

Remarks: We can also define gkj,,maz = max, 19(')(n)I in the noise model. Based on these parameters,

we can minimize the output error variance by using " periodically time-varying" bit allocation scheme (that

is, use bki instead of bk). Although this is more general than what have been done above, the improvement

is negligible for the one-level FB convolver. The reason is that in this convolver, 9k(')(n) is obtained by

time-shifting the input g(n), and .0 would not vary very much with respect to i. In fact, in all the

numerical experiments we carried out, we find that all bki are the same for all i, even if we allow periodically

time-varying bit allocation. However, in the case of the two-level FB convolver, this is not true. The coding

gain usually increases by a large amount if a periodically time-varying bit allocation scheme is employed.

4.2. Low sensitivity FIR filter structures using the two-level FB convolver
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We can implement FIR filters using the two-level FB convolver instead of the one-level FB convolver.

This will give a lower sensitivity (i. e. , provide a much higher deterministic coding gain). Or equivalently,

we can afford to quantize the subband filters 9,(')(n) to a much lower bit rate for a fixed accuracy. The

optimal bit allocation and deterministic coding gain will be derived in the following. Again for a preview of

the advantage of the two-level FB convolver over the one-level FB convolver, compare Fig. 5.3 and Fig. 5.4.

The equivalent filter responses for both the cases are comparable even though the average number of bits

used in the two-level FB convolver (2 bits) is only half of that used in one-level FB convolver (4 bits).

Consider Fig. 4.1(b). Let bki be the number of bits used to quantize the subband fiter 9( )(n). Then

the average bit rate b is defined as in (3.1). The noise model assumed here is the same as that in Section 4.1

except that (4.4) is replaced with

2= /L2h • jq~t)(n)j2= C2 •gi 2 -2bh, (4.13)
(j) k,,maz

where

gk,,m= ! max jg(') (n). (4.14)

4.2.1. The optimal bit allocation and the deterministic coding gain

The error at the location y,(n) in Fig. 4.1(b) can be expressed as (4.6). To carry on the analysis, we will

assume that the filter bank {F•(z)} is paraunitary. By using the same technique as in the previous section,

we find that the optimal bit used to quantize g( )(n) is

M-1

bki = b-+0.51og22 tOk9ki,maz - 0.5 E 1og 2 (a,/3//f3 (4.15)
ji=0

where

2= 2'1 IL, = geometric mean of gt2,,MQ.* (4.16)
i=0

The average output noise variance under optimal bit allocation is

M-1

o = cL.2- 2 b [I (,u2.#). (4.17)
k=O

From (4.9) and (4.17), we find that the deterministic coding gain of the two-level FB convolver over the

direct form is

0, = to2 x g. (4.18)ag t o -I1= (.x2,y /nk 2M - In

A lower bound for the coding gain. Again we cannot show that the coding gain is always greater

than unity. But by exploiting the result from Appendix A (with hk(n) replaced with hk(n) * hý(n)), we can

obtain a (very pessimistic) lower bound similar to (4.12) for the coding gain. The lower bound is

G,. t _>a2 (4.19)
1l•=0 ((LH. + L1, -
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where LH, is the length of the analysis filter H•(z), assumed to be the same for all i. By taking the ratio of

(4.18) to (4.10), we find that the ratio of the deterministic coding gain of the two-level FB convolver to that

of the one-level FB convolver is
M-1

R = fi ( .f " (4.20)
Okfi

Comparisons of results. Comparing the coding gain formulas in all the cases (Gz,oe, Gx,tw, Gg,one

and G,,two), we find that all of them have the following form

r 2A
2-- x-• × (4.21)

r-M-1m 1 1/ni M-1m 2 /ni
,=0 0O, 8'= &

All of them have a common first factor which is always greater than unity when the filter bank is orthonormal.

They differ only in the second factor. All of them can be obtained by substituting A2 and A? with the

corresponding parameters. The only difference is that unlike in the case of the statistical coding gain in

Section 3, for the deterministic coding gain we cannot prove a result similar to (3.21). That is, we cannot

prove that is the arithmetic mean of gki even if the filter H•(z) is paraunitary. So the ratio of

the deterministic coding gain, R. in (4.20), cannot be proved to be always greater than one. Nevertheless,

in practice, we will find that O32 is usually much smaller than g2,,'a. for a frequency selective filter g(n). The

reason is that under usual situations the arithmetic mean of g2i,mx would not differ much from gk2,•. But

g2 may vary considerably with respect to i if g(n) is frequency selective. Thus, we may expect that the

coding in (4.18) would be much larger than that in (4.10) as we will see in the numerical examples in the

following section.

Coding gain when both input signal x(n) and filter g(n) are quantized. When quantizers are

inserted in both the subbands of x(n) and g(n), the coding gain is not the product of Gx and Gg. To

obtain the coding gain, we apply the optimal bit allocation formulas in (3.14) and (4.15) respectively to the

quantization of Zk (n) and g() (n), and ignore the second order effect. The coding gain is

G = q•,V,} + {laqG,,t}g (4.22){ 0d~irect}x ". {direct}g

where the subscript "x" is used to denote the case when only x(n) is quantized, and 'g" is used to denote

the case when only g(n) is quantized. We see that the largest error term in (4.22) will dominate the coding

gain.

5. NUMERICAL EXAMPLES

In this section, only g (n) are quantized, but not xk(n). In the presence of quantizers in the subbands

of g(n), the LTI system with impulse response g(n) is effectively replaced with a periodically time varying

system (LPTV) (see Section 10.1 of [3] for an introduction to LPTV system) with period L (see next section

for the discussion). To describe the system, we have to characterize all L transfer functions Tk(z) as shown

in Fig. 5.1. In all the following examples, we therefore show all transfer functions.
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In the first four examples, g(n) is an equiripple lowpass filter with L. = 132. The stopband attenu-

ation 6. = -60 dB and the passpand ripple size 6. = 0.010. The frequency responses of g(n) with direct

quantization to 4 bits and without quantization are shown in Fig. 5.2, the stopband attenuation reduces to

-17 dB and the passband ripple size increases to 0.049 after quantization. In these four examples, we will

show the equivalent filters if we implement g(n) by using the low-sensitivity structures (Fig. 4.1(a) and (b)).

For comparison of the results in the first four examples, we summary the main features in Table 5.1. In

the last two examples, we will show the deterministic coding gain and verify the theoretical values with the

experimental values.

Example 1. 4 channel paraunitary (PU) filter bank (one-level FB convolver): L = M = 4, and

b = 4 bits. The 4 channel filter bank in Fig. 4.1(a) is taken to be a tree-structured PU filter bank obtained

by using two-channel PU filter bank in a symmetric tree. The two-channel PU system uses Filter 8A in [25].

If we implement the analysis bank {Hk(z)} in lattice form, we need only 8 multiplications per input sample.

The corresponding optimal bit allocation is bo = 10, bi = 5, b2 = 1, b3 = 0 bits. As shown in Fig. 5.3, the

stopband attenuations of all the 4 filters T,(z) are more than 42 dB, i. e. more than 25 dB better than that

of the direct quantization. The passband ripple 6p = 0.013. The effect of quantization on the ripple size is

negligible.

Example 2. 4 channel PU filter bank (two-level FB convolver): L = M = 4, and b = 2 bits.

Both the filter banks formed by {Hk(z)} and {H•(z)} are taken to be the filter bank used in Example 1.

The corresponding bit allocation is shown in Table 5.2. As we would expect, bki are large for i = 0 because

most of the energy of G(z) is in the first branch. As shown in Fig. 5.4, the stopband attenuations (44 dB)

are comparable to that obtained in Example 1 but the average bit rate b is reduced to half. The passband

ripple 6. = 0.015.

Example 3. 4 and 8 channel DCT coders (one-level FB convolver): b = 4 bits, we use the DCT

filter bank, shown in Fig. 4.1 in 12]. In a transform coder filter bank, the polyphase matrix E(z) of the

analysis filters is a constant matrix T. In this example, two cases of T are considered: (i) 4 x 4 DCT matrix

(ii) 8 x 8 DCT matrix as defined in Eq. (12.157) [22]. DCT has the advantage that the analysis filters have

linear phase and there exists fast algorithm for the computation of DCT. The corresponding bit allocations

are shown in Table 5.3. For each case, we show only one transfer function To(z) in Fig. 5.5 for simplicity.

We see that for M = 4 , the stopband attenuation is 32 dB and 6b = 0.022. For M = 8, the stopband

attenuation is 38 dB and 6. = 0.012.

Example 4. 4 and 8 channel DCT coders (two-level FB convolver): b = 2 bits. The filter bank

used here is the same as Example 3. And {H•(z)} is identical to {Hk(z)1. The optimal bit allocation for

4 x 4 DCT is shown in Table 5.4. The corresponding optimal bit allocation for 8 x 8 DCT is shown in Table

5.5. For simplicity, we show only To(z) in Fig, 5.6. The stopband attenuations for M = 4 and M = 8 are

27 dB and 33 dB respectively. The passband ripple size increases to 0.035 and 0.017 respectively for M = 4
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and M = 8.

Example 5. Coding gain (one-level FB convolver): M = 4 and b = 8 bits. The filter bank used

here is the same as that used in Example 1. The input signal x(n) is taken to be an AR(5) process with

autocorrelation coefficients R(k) obtained from Table 2.2 of 122] (lowpass speech source). The first two

rows of Table 5.6 show respectively the coding gain obtained from (4.10) (G9,one) and that obtained from

experiment (G9 , ept,one) for 5 different filters 9(n) (Filter 1 is the g(n) used in the previous 4 examples). In

most cases the theoretical value obtained from (4.10) is very close to the experimental result, in spite of the

many statistical assumptions used.

Example 6. Coding gain (two-level FB convolver): The fiter bank formed by {H•(z)} is identical

tc that formed by {Hk(z)1 and other conditions are the same as those in Example 5. The coding gain

obtained from (4.18) (Gg,two) and that obtained from experiment (Gg .,pt,t.) for the same set of 5 different

filters g(n) are shown in the third and fourth rows of Table 5.6 respectively. Again we see that the theoretical

values are very close to the experiment results. The performance of the two-level FB convolvers is much

better (8.7-17.4 dB or equivalently 1.5-3 bits approximately) than that of one-level FB convolvers for all the

5 cases. The ratios of the coding gain for the two-level FB convolver to that of the one-level FB convolver,

R. (theoretical) and Rg,ecpt (experimental) are shown in the last two rows of Table 5.6.

From the first four examples, we notice that the performance of the DCT coder is not as good as that of

the PU filter bank transformer in Example 1 and 2. The reason is that the analysis filters of the DC'1 coder

have a smaller stopband attenuation. The leakage from the adjacent band is quite large. In the last two

examples, we see that the coding gain for the two-level FB convolver is much larger than that of the one-level

FB convolver although we cannot prove theoretically that this is always true. By using the two-level FB

convolvers in the convolution, we get a much higher accuracy at the expense of the cost of one filter bank.

6. RELATION TO BLOCK FILTER AND ALIASING EFFECT

6.1. Convolvers in the view of block filter

It is well-known 111], 112], [13], [6], [Chapter 10J3]] that block filtering is a technique to implement a

scalar filter G(z) in such a way as to increase the parallelism. In this section, we will explore the relationship

between the filter bank convolver and the conventional block filtering technique. It was shown in [26] that

the nonuniform system of Fig. 1.1 can be expanded as an L-channel uniform system. The M pairs of filters

{Hk (z), Fk (z)} in the nonuniform system are replaced by the L pairs of filters, say fHk"(z), Fk'"(z)}, in the

uniform system. We will discuss the uniform case only, as the nonuniform problem can be translated to

uniform case.

6.1.1. Conventional block filtering

Given any scalar filter G(z), we can implement it by using block filtering technique as shown in
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Fig. 6.1(a). The matrix G(z) in Fig. 6.1(a) is a pseudocirculant matrix and it can be written as:

/ 0(z) Go(z) G2(z) ... GM-I(Z)\

z-GCo-1(z) Go(z) 01(z) ... GM-2(Z)

G(z) = I Z-GM-2(z) Z-1 GMm-1(z) Go(z) ... GM-s(Z), (6.1)

z-I0I(z) z-1G 2(z) z-1 G 3(z) ... Co(z)

where G1(z) is the ith polyphase component of the scalar filter G(z). In fact, the multirate system in

Fig. 6.1(a) is a linear time-invariant (LTI) system if and only if G(z) is a pseudocirculant matrix [27). From

(6.1), it is clear that we have the following relationship between [G(z)]i, the elements of the matrix G(z)

and the filter G(z):
M-1z-iG(z) = : z-" [G(zm}],,t. (6.2)
k=O

Moreover, it can be shown [3] that the matrix G(z) is paraunitary if and only if the filter G(z) is an allpass

filter. When G(z) is FIR, this is impossible unless G(z) is a delay.

6.1.2. Relation of one-level FB convolver to conventional block filtering

In the case of one-level FB convolver with uniform decimation ratios, the ith Type 2 polyphase compo-

nent of x(n) * g(n) can be written as (2.1) with L = M and all Pk - 1. We reproduce the equation here for

convenience:
M-1

Yi(z) = (z-iX(z)G(z)) = Xkjz)G"'~(z), 0: iA 5 M -. 1, (6.3)

where the subband signal G(')(z) is the kth GPP component of z-'G(z) with respect to {Hi(z)} as defined

in Fig. 1.1(b). By writing (6.3) for all values of i, we obtain the matrix equation:( Yo(z)\

Y (z)) = Gone.(z)x(z), (6.4)
YM-..I (z)I/

where the column vector x(z) = [Xo(z) Xi(z) ... XM_I(z)]T and the matrix Gone(z) is defined as:

Go C~°(Z) G(°(z) ... G•..(z) ( \

Gone(z)= [ °(z) G)(z) "" 0 M"(z) . (6.5)
G(Mo -) (z) G•m-1)(z) ... cG'_-',(z)

By the definition of Type 2 polyphase representation, the output of the convolution y(n) can be written

compactly as:
Y0(z M )

Y(z)=() yi(zM) =(z)Gone(Z")x(zM), (6.6)

SYM_(zM) ,2

20



where Z(z) is the row vector [I z ... zM-2]. FRom (6.6), we immediately get the implementation in

Fig. 6.1(b), by using the fact that X1(z) = [X(z)Hk(z)]IM.

Comparison betweei ý,ne-level FB convolver and conventional block filtering. Comparing

Fig. 6.1(a) and (b), we discover that the one-level FB convolver is a generalized version of block filtering.

Instead of decomposing x(n) and g(n) into their conventional polyphase components as we did in Section

6.1.1, we decompose x(n) and g(n) into their GPP components respectively with respect to two separate

sets of polyphase basis, namely {H,(z)) and {F,(z)). The delay chain before the block filter is replaced by

a more general analysis bank with filters {H&(z)}. Therefore, we can view the convolver as a generalized

block filtering technique, which provides not only the advantage of parallelism, but also the advantage of

coding gain when implemented in finite percision. Of course, the coding gain is obtained at the expense of

the cost of one filter bank. This generalized block filtering technique provides a good tradeoff between the

coding gain and the complexity. This is the advantage that the conventional block filtering technique does

not have. By using GPP representation, a relationship similar to (6.2) between [Gone (z)] ,, and G(z) can

be interpreted nicely as:
M-1

z-'G(z) E [G.n(zM)I,,Hk(z). (6.7)
k=O

It also can be proved (see Appendix B) that the matrix G0.e(z) is paraunitary if and only if the filter G(z)

is an allpass function, provided that the set of filters {HI (z)} is paraunitary.

6.1.3. Relation of two-level FB convolver to conventional block filtering

For two-level FB convolver with uniform decimation ratios, the ith GPP component of x(n) * g(n) with

respect to the polyphase basis {F'(z)} is:

M-1
Yi(z) = E Xk(z)G(N(z), 0 < i < M - 1, (6.8)

k=O

where the subband signals G()(z) are the kth GPP components of H•(z)G(z) with iespect to {Hz(z)} as

defined in Fig. 2.1. By writing (6.8) for all values of k, we get the equations similar to (6.4) and (6.5), except

that the matrix Gone(z) is replaced by Gtwo(z), where[Gto(z)] , = G(9)(z). By defining the row vector

f'(z) = [F•(z) F1'(z) ... Fý(_.(z)], the output of the convolution y(n) can be reconstructed from the

GPP components Y,(z) (as defined in (6.8)) as:

M-1

Y(z) =E YdzM)Fk(z) = f'(z)Gt.(zM)x(zM), (6.9)
k=O

where the column vector x(z) is as defined in previous section. From (6.9), we get the implementation of

the two-level FB convolver as in Fig. 6.1(c).

Comparison between one- and two-level FB convolver in the light of block filtering. Compar-

ing Fig. 6.1(b) and (c), clearly the two-level FB convolver is a generalized version of one-level FB convolver.
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In the two-level FB convolver, the "advance chain" in the one-level FB convolver after the block filter is

replaced by a more general synthesis bank with filters {F'(z)}. Notice that the sets of filters {Hk(z)} and

{F•(z)} can come from two different biorthonormal systems. The relationship between (Gt,,o(z)],k and G(z)

can be written as:
M-1

H'(z)G(z) = [GtWo(z M )],kHk(z). (6.10)
k=O

Similarly, we can prove (Appendix B) that the matrix Gt,.(z) is paraunitary if and only if the filter G(z) is

an allpass function, provided that the sets of filters {Hk(z)} and {HL(z)} are paraunitary.

Remarks: The adaptive structure in Fig. 2 of [14] is a simplified version of the two-level FB convolver

in Fig. 6.1(c) (with the second set of filter Fk(z) replaced with Fk(z)).

6.2. Aliasing effects and the equivalent LPTV filter in the presence of quan-

tizers

In the presence of quantizers in the subband of g(n), the equivalent system is not a linear time invariant

(LTI) system anymore. We will discuss the aliasing effect and the relation between the subband convolver

and a linear periodically time varying (LPTV) system.

Let Q(S)(z) be the z transform of q(I) (n), where q() (n) is defined in (4.2). Define the matrix Q(z)
O Q(°)Z) Q,° (Z) ... Q (O)_,I(z)\Q()Z I)z (•lZ

Q(z) = 0Q°(z) Q1(Z) ... Q M(Z) (6.11)
•. .) )

Q(0M l)(z) Q( M 1 1

Let Gne (z) be the quantized version of Gone(z). Then d.,.e (z) = Gon (z) + Q(z). The system in Fig. 6.1(b)

can be drawn equivalently as that in Fig. 6.2(a). The upper path gives the desired output and the lower

path represents the error. By using the polyphase representation, Fig. 6.2(a) can be redrawn as Fig. 6.1(b)

where

P(z) Q(z) E(z), (6.12)

and E(z) is the polyphase matrix of the analysis filters Hk(z). From Fig 6.2, we see that the lower path is

an LPTV filter and it is an LTI filter if and only if the matrix P is psuedocirculant ([3], Section 10.1). For

the case of the two-level FB convolver as in Fig. 6.1(c), the similar result holds except that the matrix P(z)

is replaced by

P(z) = R'(z) Q(z) E(z), (6.13)

where R'(z) is the Type 2 polyphase matrix of the synthesis filters F'(z).

Let d(z) = [do(z) di(z) ... dM-.(z) IT P(zM)e(z), where e(z) = [1 z- 1  ... z-(M-1)]T and let

T1(z) = z-'G(z) + d1(z). Then the system in Fig. 6.2 can be redrawn as Fig. 5.1. The aliasing components

Aj(z) (see Eq. (5.4.7) of 131) can be expressed as:

Ai(z) =I - 1 zkdk(zWi), for 1!<i:<M-1 (6.14)
k=O
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and
Ao(z) = M(z) + I d-1 (6.15)

AojWE )C(z)+.
k--0

G(z) is the desired response, F/ - di(z) represents the distortion and for 1 <i < M - 1, Aj(z) are the

aliasing components. The error due to the aliasing and distortion can be written as

M-16 2=~ ~ j)' + 1(i)-Ge- )'

M- M-i 1 -kwdk(e3(-2wi/M))2

i=O Mk=O

M--1 M--1
< Mji E Idk(e7(w-2"1M))12 (6.16)

i=O k=O

The magnitude responses of dk(z) for Example 1 are shown in Fig. 6.3. All the magnitude responses are

under 40 dB even though the coefficients are quantized to an average bit rate of 4 bits only.

6.3. Subband implementation of LPTV filters

From the earlier discussion in this section, it is natural to ask if the subband convolver can be modified

to implement an LPTV filter. In the following we will show that the answer is in the affirmative. The

implemenation leads to a low sensitivity structure for LPTV filters.

Given an LPTV filter with period L, we can characterize the filter by a set of L transfer functions

{T,(z)} as shown in Fig. 5.1. Notice from the figure that the ith polyphase component y (n) of the output

of the LPTV filter is completely determined by the transfer function T,(z). By Theorem 2.1, yi(n) can be

obtained as: M-1

yidn) = ((n) *t1 (n)), = E(xk(n) *ttk(n)), (6.17)

where ti(n) is the impulse response of T,(z), xk(n) are defined in Fig. 1.1(a), and til,(n) are the subband

signals obtained by replacing g(n - i) in Fig. 1.1(b) with t, (n). The periodically time varying bit allocation

can be employed to achieve a low sensitivity structure for LPTV filters.

7. LOW SENSITIVITY STRUCTURES FOR IIR FILTERS
If we consider the IIR filtering problem as two FIR filtering problems (one in the forward path and one

in the feedback path), then the low sensitivity structure for FIR filters can be applied to obtained a low

sensitivity structure for IIR filters. Though the application is straight forward, several issues like stability

and causality must be taken care. Any filter with rational transfer function can be considered as a cascade

of an all-zero filter and an all-pole filter. In Section 4, we have already considered the structure for all-zero

filters. Thus we will study the low sensitivity structure only for an all-pole filter. Let

1

G(z) =1 + b(1)z- 1 +... + b(N)z-N (7.1)
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Then the output of the convolution z(n) * 9(n) can be written as
N

S= - b(k)y(n - k) + x(n). (7.2)

The summation at the right hand sight can be considered as the convolution of b(n) and y(n). This gives the

implementation in Fig. 7.1. If the spectrum of x(n) is known, then so is that of y(n). The coefficients b(n)

can be quantized in the subbands according to the energy distribution of y(n) and b(n). Thus the output

error due to quantization can be minimized by optimal bit allocation. However, the low sensitivity structure

for IIR filters is not as useful as that for FIR filters because of the following reasons:

Stability. From Section 6, we know that the equivalent system with subband quantization is an LPTV

system. With an LPTV system in a feedback loop as in Fig. 7.1, the analysis of stability of the overall filter

is very difficult [28]. Even though the original filter g(n) is stable, we cannot ensure the stability of the

resultant filter after quantization.

Causality. Assume that Hk(z) and Fk(z) are causal filters. If the system in Fig. 1.1 is perfect recon-

struction system, then the M-th channel filter bank will introduce a delay of at least M - 1 samples [8].

That means that the subband convolver will introduce some delay, say D. At the instant of the computation

of y(n), the output of the convolver in the feedback path is y(n - D) * b(n - D). At the time instant n, to

compute the summation in the right hand side of (7.2), we need y(n + i) for 0 < i < D, which is impossible.

To avoid the noncausality, we can use (7.2) repeatedly to get

N+D D

y(n) = - Z c(k)y(n - k) + 1d(k)x(n - k). (7.3)
k=D+l k=O

However, D more multipliers (d(k) in the second summation) are required in the implementation. If the

delay D is long, then this computational overhead is large.

Complexity. As we mentioned earlier, for the subband convolver to be useful, the FIR filter must have

a long impulse response. But for the IIR filter, the filter seldom has an order N greater than 10. In this

case, the complexity of the filter bank is comparable to (or even higher than) that of the filter g(n).

Frequency selectivity. Let B(z) = b(l)z- 1 + b(2)z- 2 +... + b(N)z-N. The deterministic coding of the

subband convolver is high when the FIR filter B(z) is frequency selective. But since B(z) is only a part of

the denominator of an IIR filter, the energy of B(z) is distributed all over the frequency domain, even when

the filter g(n) is a frequency selective filter.

8. CONCLUDING REMARKS

8.1. IFIR filter as a special case of subband convolver

IFIR filters were introduced in (151 to design narrowband filters. In lowpass case, if the stopband edge

is smaller than w/M, then G(z) can be approximated by a cascade of two filters as:

G(z) _ G(°)(zM)I(z), (8.1)
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where I(z) is a low cost filter. The number of coefficients in G(M)(z) is roughly equal to 1/M of that in G(z).

Fig. 8.1(a) shows the implementation of an IFIR filter.

From Fig. 1.1(b), G(z) can be decomposed into its GPP components as

M--1GZ = ')z)H() (8.2)
k=O

The decomposition is exact. Fig. 8.1(b) shows the implementaion. If 0(z) has passband smaller than

ir/M, then only G(°)(z) in (8.2) has significant energy. By dropping all the other unimportant channels in

Fig. 8.1(b) corresponding to G(°)(z) (k = 1, 2, ... , M - 1), Fig. 8.1(b) reduces to Fig. 8.1(a) (with Ho(z)

and Fo(z) regarded as I(z) and J(z) respectively). Therefore, more generally, if G(z) is a multiband filter,

the subband convolver can be used to approximate G(z) by retaining the channels which contain most of

the energy.

8.2. Conclusions and open problems

In this paper, we have generalized the subband convolution theorem in 12]. We have derived the coding

gain for the generalized convolver, and it was proved that this coding gain is always greater than that of the

one-level FB convolver in 12]. We also unified the subband convolvers, GPP representation, block filtering,

LPTV filters, and IFIR filters under one framework. This framework provides us a better understanding

of the subband convolvers. As an application of the convolution theorem, a low sensitivity structure for

FIR filters is proposed. We have defined the deterministic coding gain of the low sensitivity structure and

demonstrated that the coding gain is high. Even when the filter coefficients are quantized to a very low bit

rate, we can get filters of small passband ripple and large stopband attenuation. However, the linear phase

property of the filter g(n) is generally not preserved when we implement the filter in the low sensitivity

structure. How to exploit the symmetry (or some other properties like Mth-band property and etc) of the

filter to save computation is still an open problem. Another important issue which is not being addressed in

this paper is how to design an optimal filter bank to maximize the convolutional coding gain. Even for the

case of traditional transform coder, the solution is unknown.
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Appendix A. Proof of (4.11)

First, we will prove a fact about vector norms inequality. This will be used to derive (4.11).

Fact B.1. Let v = Ivo v1 ... VN-1]T, and let 11 • II1 and I1 112 denote 1-norm and 2-norm respectively.

Then

II 111: I N 11 V 112 (A.1)

Proof. Let 1 = [11 1]T and u = [1vol lvii ... IVUI]T. Then we have

N-1

1l v Ii, = uI= T .u
i=O

<- 111211 U 112=11 111211 V 112= Vr II V 112, (A.2)

using Cauchy-Schwarz inequality. VVV

By definition, we have

9k,,.. = max, IoA,4)(n)j = max I(g(n - i) * hk(n)),,I
%,n ~~1,n 4 ,

= max Ig(n) * ht(n)I

Luk -1

!5<gm= E I hk(n) I (A.3)

The third equality follows from the fact that (g(n - i) * hk(n)) n, is one of the polyphase components of

g(n) * hk(n). The last inequality follows directly from triangular inequality. Applying Fact B.1 and the fact

that hk(n) has unit energy (2-norm is unity), (4.11) follows immediately.

Appendix B. Proof of some facts in block filtering

Lemma B.1. One-level FB convolver. Suppose that the set of filters {Hk(z)} is paraunitary. Then

the matrix Gone(z) defined in Fig. 6.1(b) is paraunitary if and only if the filter G(z) is an allpass function.

<2>

Proof. By writing (6.7) for all values of i = 0, 1, ... , M - 1, we have the following matrix equation:

/ () Ho(z)

Sz-'(z) - G one (ZM) Hdz) = Gone(zM)E(zM)e(z), (B.1)

z-M+'G(z) HMI (z)

where the matrix E(za is the polyphase matrix of the filters {Hk(z)} and e(z) = [1 z-1 ... z-M+1].

Substituting z with zW-' for i = 0, 1, ... , M - 1 into the above equation, we get

A(Z)WI'G(Z) = G,0 .(zM)E(zM)A(z)W, (B.2)

where A(z) is the diagonal matrix diag[l Z1  
... z-M+], PG(z) = diag[G(z) G(zW) ... G(zWM-')]

and W is the M x M DFT matrix with [W],i = W'i. Since A(z), W and E(z) are paraunitary matrices,

Gone(z) is paraunitary if and only if 4G(z) is. The proof is complete. V V
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Lemma B.2. Two-level FB convolver. Suppose that the sets of filters {H&(z)} and {Hk(z)} are

paraunitary. Then the matrix GCt.(z) defined in Section 6.1.3 (Fig. 6.1(c)) is paraunitary if and only if the

filter G(z) is an allpass function. C

Proof. The proof is similar to that of Lemma B.1. By using (6.10) and following the procedure in the

proof above, the lemma follows. vvv
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(a) the convolution of x(n) and g(n),
(b) two identity systems inserted,
(c) the identity systems chosen to

be two multirate systems,

(d) the i-th branch of (c),
(e) an identity.
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Fig. 3.1. Relationship between the subband signals
of the one-level and two-level FB convolvers.
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Fig. 4.1. The low sensitivity structures for FIR filters,
(a) with one-level filter bank convolver,
(b) with two-level filter bank convolver.
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Fig. 5.1. A representation of an LPTV system.
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Fig. 5.2. Magnitude response of g(n) with
direct quantization to 4 bits, and
without quantization.
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Fig. 5.3. Example 1. Magnitude response of g(n), with
subband quantization to 4 bits by
using one-level FB convolver.
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Fig. 5.4. Example 2. Magnitude response of g(n), with
subband quantization to 2 bits by
using two-level FB convolver.
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Fig. 5.5. Example 3. Magnitude response of g(n), with
subband quantization to 4 bits by
using one-level FB convolver.
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Fig. 5.6. Example 4. Magnitude response of g(n), with
subband quawtization to 2 bits by

using two-level FB convolver.



x(n) y(n)

z
(a) TV

-1( i - G(z)
z 1

"z

x(n) yon y(n)

(b) Gone(Z) A z

Fig. 6.1. Unified view of block filtering and filter

bank convolver,
(a) conventional block filtering,
(b) one-level FB convolver,
(c) two-level FB convolver.
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"i't, 5.2. (a) An equivalent representation of Fig. 4.1(a),

(b) a block filter representation.
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Fig. 6.3. Magnitude responses of the aliasing
components.
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Fig. 7.1. A low sensitivity structure
for an all-pole filter.
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Fig. 8.1. Relationship between convolver and IFIR filter,

(a) implementation of IFIR filter,
(b) implementation of convolver.



b 68 (dB) 6P
No Quantization - -60 0.010

Direct Quantization 4 -17 0.049

4ch PU Bank: 1-level 4 -42 0.013

4ch PU Bank: 2-level 2 -44 0.015

4 x 4 DCT: 1-level 4 -32 0.022

8 x 8 DCT: 1-level 4 -38 0.012

4 x 4 DCT: 2-level 2 -27 0.035

8 x 8 DCT: 2-level 2 -33 0.017

Table 5.1. Summary of Examples 1 - 4.

b is the average bit rate.

6, and bp are the stopband attenuation

and the passband ripple size respectively.



k 0 1 2 3

i=0 11 7 2 0

i=1 3 4 0 0

i-2 2 0 0 0

i-3 0 0 0 0

Table 5.2. Example 2. The number of bits bki allocated to Q'ki

k= 0 1 2 3 4 5 6 7

4x4DCT 7 6 3 0 . . . .

8x8DCT 9 9 6 3 3 1 1 0

Table 5.3. Example 3. The number of bits bk allocated to Q'k

k 0 1 2 3

i-0 7 6 3 0

i-1 5 5 2 0

i-2 2 2 0 0

i=3 0 0 0 0

Table 5.4. Example 4(i). The number of bits bki allocated to Q'ki



k= 0 1 2 3 4 5 6 7

i=0 9 7 8 5 5 2 2 0

i=1 7 9 7 4 4 2 1 0

i=2 7 6 6 3 3 1 0 0

i=3 3 4 3 1 0 0 0 0

i=4 4 3 3 0 0 0 0 0

i=5 2 1 1 0 0 0 0 0

i=6 2 1 2 0 0 0 0 0

i=7 0 0 0 0 0 0 0 0

Table 5.5. Example 4(ii). The number of bits bki allocated to Q'•

Filter No. 1 2 3 4 5

Gf,one (dB) 33.2 19.3 17.6 26.4 36.6

Gf,ezpt one (dB) 33.5 19.8 15.5 20.9 34.5

Gf,two (dB) 47.6 28.0 26.5 38.7 54.3

Gf, ezpt two (dB) 49.5 28.5 25.8 36.7 51.9

Rg (dB) 14.4 8.7 8.9 12.3 17.7

Rg,expt (dB) 16.0 8.7 10.3 15.8 17.4

Table 5.6. Example 5 and 6. Comparison of coding gain.


